
(Spoiler: only Swift and Julia make
the cut)

Alan Edelman (MIT & JC)
Viral Shah (Julia Computing)

Juan Pablo Vielma (MIT)
Chris Rackauckas (UC Irvine)

What Google knows about ML languages that you may not

Software Toolchain

Multiphysics (PDEs) Optimization Adjoint Methods Machine Surrogate Models
(Backprop/Autodiff) Learning Dim Reduction

1 2 3 4 5 6 7

- 4

- 2

2

4

Composability Sensitivity Analysis Performance Uncertainty Scalable
Confidence Intervals Nimble/Agile Quantification

?

Modern Software Development

Languages Studied by Google as Powerful for ML

https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md

https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md

1. Filter on Technical Merits

Languages Studied by Google as Powerful for ML

1. Filter on Technical Merits

2. Filter on Usability

Languages Studied by Google as Powerful for ML

1. Filter on Technical Merits

2. Filter on Usability

Julia: Julia is … currently investing in machine learning
techniques, and even have good interoperability with
Python APIs. The Julia community shares many common
values…

Languages Studied by Google as Powerful for ML

KNet

All languages are
equally good.

… but I tune out
any mention of

languages I don’t
use

Psychology of Programming Languages

All languages are
equally good.

… but I tune out
any mention of

languages I don’t
use

…at least until
Google tells me
to pay attention

Psychology of Programming Languages

Software Toolchain

Multiphysics (PDEs) Optimization Adjoint Methods Machine Surrogate Models
(Backprop/Autodiff) Learning Dim Reduction

1 2 3 4 5 6 7

- 4

- 2

2

4

Composability Sensitivity Analysis Performance Uncertainty Scalable
Confidence Intervals Nimble/Agile Quantification

?

Topology Optimization ---- 20 years ago what we did

Write Force Balance Law  Finite Elements  Linear System  Solve  Graph

Dense Matrices

Sparse Matrices

Now!

Write Force Balance Law  Finite Elements  Linear System  Solve  Graph

Dense Matrices

Sparse Matrices

Fancy Differential Equations  Dimensionality Reduction 

Topology Optimizaton

Compose many physical systems

Black Boxes vs White Boxes

visible
code

Floating Point
Numbers

Generic Types

Generic Types

Floating Point
Numbers

Black Boxes vs White Boxes

visible
code

Opaque

Floating Point
Numbers

Generic Types

Generic Types
 Legacy Code
 Can’t hit all the criteria Code must rewrite other code

Floating Point
Numbers

An Idealized Modern Toolchain for Energy

(we can have this!)

True Physical Equations

PDEs, PDMPs, …

Surrogate Model

Neural Network, …

Optimization

floats in

floats in

floats in

floats out

floats out

floats out

Today (Fragmented) What could be with high level tools
& generic types

adaptive data generation
for more accurate surrogates

specialized machine learning
models for efficient optimization

optimal solutions with
uncertainty estimates


trigger on demand,
sensitivity analysis

 needs programmable form

Retrofitting your software for
machine learning, sensitivity analysis, scalability,

optimization

We would love to work with each and every one of you

• Support hardware accelerators (GPUs, TPUs, Nervana, New silicon)

• Parallelization (Multi-threading, Multi-GPU, Distributed)

• Optimization (Placement, Memory Use, Low overhead)

• Automatic Differentiation

• Ease of programming (Math notation, Debuggers, Libraries)

• Ease of deployment (Cloud, Phones, Embedded)

ML problems are really language problems

ML models are really programs

Models commonly need:

• Conditional branching

• Loops for recurrence

• Recursion over trees

In areas such as probabilistic programming

• Models need to reason about other programs (e.g. program generators and interpreters)

• Include non-differentiable components like Monte Carlo Tree Search.

New models have new demands

Stanford TreeBank

def model(tree):

if isleaf(tree):

tree.value

else:

model(tree.left) + model(tree.right)

https://arxiv.org/pdf/1503.00075.pdf
https://eng.uber.com/pyro/
https://arxiv.org/pdf/1705.03633.pdf
https://arxiv.org/abs/1605.06640

● We build a “computational graph” (essentially an AST)

● Which may contain control flow (tf.if, tf.while), variable scoping

● Cannot reuse existing libraries. Need new libraries for I/O and data processing.

TensorFlow is more like a language and

less like a library

Lazy (Eval) programming in JS

function add(a,b) {

return `${a}+${b}`;

}

x = 1; y = 2

z = add(‘x’, ‘y’) // ‘x+y’

eval(z) // 3

x = 4

eval(z) // 6

Abadi, M., Isard, M., Murray, D., A Computational Model for TensorFlow: An Introduction, 2018.

Mixed Integer Optimization and Julia

http://www.gurobi.com/company/example-customers

• Mixed Integer Optimization
• Discrete + nonlinear
• Theoretically hard
• Routinely solved in practice

3/9 /16, 12:08 PMAcademic Page of Juan Pablo Vielma

Page 3 of 3ht tp:/ /www.mit .edu/~jvielma/

Jennifer Challis
E62-571,
100 Main Street,
Cambridge, MA 02142
(617) 324-4378
jchallis at mit dot edu

Collaborators

Shabbir Ahmed, Daniel Bienstock, Daniel Dadush, Sanjeeb Dash, Santanu S. Dey, Iain Dunning, Rodolfo
Carvajal, Luis A. Cisternas, Miguel Constantino, Daniel Espinoza, Alexandre S. Freire, Marcos Goycoolea,
Oktay Günlük, Joey Huchette, Nathalie E. Jamett, Ahmet B. Keha, Mustafa R. Kılınç, Guido Lagos, Miles
Lubin, Sajad Modaresi, Sina Modaresi, Eduardo Moreno, Diego Morán, Alan T. Murray, George L.
Nemhauser, Luis Rademacher, David M. Ryan, Denis Saure, Alejandro Toriello, Andres Weintraub, Sercan
Yıldız, Tauhid Zaman

Affiliations

Links

Back to top
© 2013 Juan Pablo Vielma | Last updated: 02/29/2016 00:47:25 | Based on a template design by Andreas
Viklund

•
• Optimization

modelling language
and interphase

• Easy to use and
advanced

• Integrated into Julia

3/9/16, 12:08 PMAcademic Page of Juan Pablo Vielma

Page 3 of 3ht tp:/ /www.mit .edu/~jvielma/

Jennifer Challis
E62-571,
100 Main Street,
Cambridge, MA 02142
(617) 324-4378
jchallis at mit dot edu

Collaborators

Shabbir Ahmed, Daniel Bienstock, Daniel Dadush, Sanjeeb Dash, Santanu S. Dey, Iain Dunning, Rodolfo
Carvajal, Luis A. Cisternas, Miguel Constantino, Daniel Espinoza, Alexandre S. Freire, Marcos Goycoolea,
Oktay Günlük, Joey Huchette, Nathalie E. Jamett, Ahmet B. Keha, Mustafa R. Kılınç, Guido Lagos, Miles
Lubin, Sajad Modaresi, Sina Modaresi, Eduardo Moreno, Diego Morán, Alan T. Murray, George L.
Nemhauser, Luis Rademacher, David M. Ryan, Denis Saure, Alejandro Toriello, Andres Weintraub, Sercan
Yıldız, Tauhid Zaman

Affiliations

Links

Back to top
© 2013 Juan Pablo Vielma | Last updated: 02/29/2016 00:47:25 | Based on a template design by Andreas
Viklund

GPU computing in Julia

Native Array Libraries – CuArrays.jl, GPUArrays.jl, CLArrays.jl

CUDAnative.jl: 1,300 LOC
Performance difference between CUDA C++ and CUDAnative.jl
implementations of several benchmarks from the Rodinia
benchmark suite.

Besard. T., Foket, C., De Sutter, B., Effective Extensible Programming: Unleashing Julia on GPUs, 2017.

Julia ML at PetaScale to catalog the visible universe

650,000 cores. 1.3M threads. 60 TB of data.

Cori Phase II

Cori Phase II – 1.5 PetaFlop/s

Google TPU 3.0: 100 PetaFLOPS per Pod

Google TPU 3.0: 100 PetaFlop/s per Pod

It just works (Part I)

“We can teach our autodiff
system to differentiate the
svd” vs “It just works
because of built in
abstractions in language
design”

It just works (Part II)

Machine learning with
operators (not dense
matrices, not sparse
matrices)

Build Operators
solve with
“backslash”

Not Blackboard 
formula
implementation
debugging

Software Toolchain

Multiphysics (PDEs) Optimization Adjoint Methods Machine Surrogate Models
(Backprop/Autodiff) Learning Dim Reduction

1 2 3 4 5 6 7

- 4

- 2

2

4

Composability Sensitivity Analysis Performance Uncertainty Scalable
Confidence Intervals Nimble/Agile Quantification

?

